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INTRODUCTION Free convection 

THE STUDY of heat transfer from the outer surface of a heated 
body embedded in a saturated porous medium has important 
applications in geophysics and engineering. However, most 
previous studies [l-5] are limited to simple geometry like flat 
plates or cylinders. As pointed out by Cheng [6]. for the 
specific application of geothermal engineering, the model of 
hot intrusion by flat plate or cylinder is ideal. For the general 
case of an axisymmetric body of arbitrary shape, the results 
are few and they are reported only by Me&in [7] and Naka- 
yama and Koyama [8,9]. Therefore, it is the purpose of this 
note to study heat transfer, in the form of free, mixed and 
forced convection, from a slender body of revolution em- 
bedded in a saturated porous medium. It is expected that the 
results obtained will not only provide useful information for 
applications but also serve as a complement to the previous 
studies. 

The suitable similarity variables for the free convection 
problems under consideration are : 

r2 
g=Ra - 

0 X 
(6) 

ti = axf (rl) (7) 

and 

T- T, 
e=-. 

Tw-T, 
(8) 

Setting q = a,,, where a,, is a constant and is numerically 
small for a slender body, equation (6) prescribes both shape 
and size of the body with its surface given by 

ANALYSIS 

Consider a slender body of revolution placed in a saturated 
porous medium. The body surface is at a variable tem- 
perature T,,,(x) while the ambient fluid is maintained at a 
constant temperature T,. Having invoked the Boussinesq 
and boundary-layer approximations, the governing equa- 
tions based on Darcy’s law are given by 

For problems of practical interest, the value of i. 4 1. For 
example, the body is a cylinder when I = 1, a paraboloid 
when i = 0, and a cone when il = - 1. After transformation, 
the resulting equations are 

2f’=e (IO) 

2qfl”+(2+f)B’-1/‘8=0 (11) 

with boundary conditions . 
!g+!p 

au Kg/9 aT -=-- 
ar v ar (2) 

aT aT Ix a aT 
uy+v-=-- r- 

ar ( > r dr ar (3) 

where x and r are the axial and radial coordinates with the 
origin placed at the front stagnation point of the body. 

The corresponding boundary conditions are: 

at the body surface, r = R(x) 

T=T,(x)=T,+A.ti, v=O; (4) 

at infinity, r + co 

T= T,, u=O for free convection (5a) 

= U_(x) = Bx’” for mixed convection (5b) 

where R(x) prescribes the surface shape of the axisymmetric 
body. 

The system ofequations (l)-(3) can be reduced to ordinary 
differential equations by a similarity transformation. 
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x(l-w2 . (9) 

rl = a,,, e= 1, f+@-l)a,f’=O (12) 

rt-+co, e-0, f’=o. (13) 

It is clear that solutions for 1= 0 correspond to a paraboloid 
with constant temperature, while they correspond to a ver- 
tical cylinder with linear temperature distribution for 
ri = I. For the latter case, Minkowycz and Cheng [I] have 
also reported similarity solutions through a different trans- 
formation. 

Mixed convection 
For mixed convection, the appropriate similarity variables 

are 

r2 
q=Pe - 0 X 

(14) 

* = cuf (9). 

Equations (2) and (3) are transformed to 
(15) 

2+1+vBx KgbA c;-mie 
(16) 

2qe”+(2+f),,-,if’e = 0. (17) 

It is apparent that equations (16) and (17) will permit simi- 
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NOMENCLATURE 

Zl 
dimensionless radius of the slender body Greek symbols 
constant defined in equation (4) 

B constant defined in equation (Sb) ; 
thermal diffusivity of porous medium 

/ dimensionless stream functions 
coefficient of thermal expansion 

V independent similarity variable 
9 acceleration due to gravity rT 
K permeability of the porous medium 

pseudo-similarity variable, 
(Ru’:‘ix)[(r,/2)(r*/r,2) - I] 

constant defined in equation (5b) 
FLI Nusselt number, h.x/k 

a dimensionless temperature 
’ 1. constant defined in equation (4) 

Pe Peclet number, CI,x/a Y 
r radial coordinate 

kinematic viscosity 
i,, constant, 2/r,,(vz/KgjL4)“* 

r0 radius of cylinder $ stream function. 
R surface shape of the body 
Ra Rayleigh number, Kg&T* - T,).~/vr 
T temperature 
II velocity component in the I-direction Ijr (a$/&) Subscripts 
Li, free stream velocity mx mixed convection 
I velocity component in the r-direction, nc natural convection 

- 1,‘r (f?li//?s) & condition at wall 
x axial coordinate. J;- condition at infinity. 

larity solutions if the exponent of x in equation (16) vanishes, 
i.e. 

m = I.. (18) 

Under this restricted condition, equation (16) can be re- 
written as 

2/-,= I+$) 

Ra KgBVw--Tm) KsBA 
pe= vu, =- VB 

(19) 

(20) 

with the boundary conditions 

4 = %l,. e = 1, f+(m-1)&f’ = 0 (21) 

l/*s, e=o, f’=1/2. (22) 

The case of uniform flow over a paraboloid at a constant 
temperature.corresponds to 1 = 0, while I = I corresponds 
to accelerating flow past a vertical cylinder with a linear 
temperature variation along its axis. 

As is the case for free convection, by setting r) = a,,, 
equation (14) prescribes both the shape and size of the body 
tiith its surface given by 

(23) 

For a given body, the relation between ant and amr is given 
by 

Ra 
a,, = pea,,. 

Forced conoeclion 
For the limiting case of forced convection, it is noted 

that the governing equations can be readily derived from 
equations (17) and (19) by simply setting Ru/Pe = 0. There- 
fore 

f’ = l/2 (25) 

2qfY + [2 + (7 - ma,,)/2]0’ - 16/2 = 0. (26) 

RESULTS AND DISCUSSION 

The transformed sets of ordinary differential equations, 
with their corresponding boundary conditions, are solved by 

numerical integration using the fourth order Runge-Kutta 
method and the shooting technique with a systematic guess- 
ing of 0’(a). 

The heat transfer coefficient in terms of the Nusselt number 
is given by 

2 = [ - 2a”20’(a)],C, for free convection (27) 

+ = [-2a’ ‘V(a)],.. 

for mixed and forced convection. (28) 

For free convection, similarity solutions have also been 
reported by Minkowycz and Cheng [I] for a vertical cylinder. 
Since the transformations they used are different from those 
of the present study, additional transformations are required 
for the direct comparison of the heat transfer results. The 
transformations for such purpose are given by 

(29) 

where the subscript denotes the differentiation, and rj and <, 
are the dimensionless variables employed by Minkowycz and 
Cheng [I]. In terms of the similarity variable used in the 
present analysis, they are given by 

(30) 

to = 2;o’ 1 nc (31) 

The results thus obtained are plotted in Fig. I where a nice 
agreement is clearly observed. 

The heat transfer results for natural convection are shown 
in Fig. 2. It is observed that the heat transfer coefficient 
decreases with an increase in the dimensionless radius. This 
trend has also been reported by Minkowycz and Cheng [I]. 

For mixed convection, the heat transfer result, equation 
(28), is plotted in Fig. 3 as a function of a,, and Ru/Pe. The 
limiting cases of free and forced convection are also shown 
as asymptotes in the same figure. It is interesting to observe 
that for i = I. the heat transfer coefficient decreases with an 
increase in the dimensionless radius, while for I = 0, the 
foregoing statement is valid only at a small value of Ra/Pe 
(< 30). The heat transfer coeffictent then increases with the 
dimensionless radius at a higher value of Ra/Pe. 

The corresponding free convection asymptotes can be 
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FIG. I. A comparison of results obtained by different trans- 
formations. 

obtained by rewriting equation (28) as 

and applying the relation between a, and %a, as given by 
equation (24). 

With a given a,,,, and Ru/Pe, a, can be determined through 
equation (24). Once Us is specified, 6’(a) can be obtained 
from solutions of equations (10) and (11). Therefore, the 
free convection asymptote is obtained, from equation (32), 
for each corresponding u,,,~. 

To summarize, heat transfer in the form of free, mixed 
and forced convection from a slender body of revolution 
embedded in a saturated porous medium has been studied 
analytically. Similarity solutions have been reported for the 
special cases for which the wall temperature and the free 
stream velocity are prescribed power functions of distance. 
Except in the case of 1= 0 and mixed convection at higher 
values of Ra/Pe (>30), it is found that the heat transfer 
coefficient decreases with the dimensionless radius. Problems 
of this kind may be encountered in geophysical and geo- 
thermal applications. The results thus obtained will be help 
ful in the assessment and evaluation of geothermal energy 
resources. In addition, the heat transfer coefficient obtained 
from this study provides useful information to estimate the 
cooling rate of intrusive bodies and consequently the life 
span of a geothermal reservoir. 
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FIG. 2. Heat transfer results for free convection. 

50 

. ---- Free Corwction Asymptote 
_ -.- Fomd Convection Asymptote 

I ,..,,I. 

(4 ‘I i It 
IO 

50 

. ---- Free Comwtion Asymptote 

. --Forced Ccrwectlon Asymptote 

I ,,,((,,, .“‘I’,’ ““” 

(b) ‘I IO 
on 

FIG. 3. Heat transfer results for mixed convection. (a) rl = 0; 
(b)I= 1. 
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